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A methodology for efficient evaluation of generalized aerodynamic forces (GAFs) in transonic flows for use in
flutter analysis is presented. GAF matrices are evaluated from a reduced-order model (ROM), which comprises
the generalized aerodynamic forces recorded from a time-accurate computational fluid dynamics (CFD) analysis
in response to a modal step excitation in each structural mode. With the step response database, that is, the ROM,
the comprehensive CFD analysis is replaced by a simple convolution scheme to compute the GAFs. The forces due
to excitation of one mode at a given Mach number for all reduced frequencies can be computed from a single step
response. Comparison of the GAFs computed from the ROM to those computed by direct sinusoidal excitation of
the boundary conditions in a CFD run demonstrate, that for small amplitudes of excitation, the ROM is capable
of predicting the unsteady aerodynamic forces very accurately. The use of ROM offers a significant reduction
in computational time and makes the calculation of CFD-based unsteady aerodynamic forces for flutter analysis
feasible. The CFD-based GAFs are used to conduct a flutter analysis of the AGARD 445.6 wing at several Mach
numbers, and the results are compared to wind tunnel test results.

Introduction

T is widely recognized that computational fluid dynamics (CFD)

methods should be more extensivelyused in aeroelasticanalyses
and structural design applications. The main argument that supports
this notion is that in the transonic flow regime, which is of primary
interestin aircraftdesign, CFD methodshave significant advantages
over the currently used linear aerodynamic methods. The major
obstacles that prohibit extensive use of CFD methods in aircraft
designare the large computationalresourcesassociated with a single
CFD analysis and the fact that traditional frequency-domain flutter
analysis methods are based on repeated evaluations of the unsteady
aerodynamic forces at different values of reduced frequencies.

Recent studies' ~* introducedthe concepts of reduced-ordermod-
els (ROMs) and linear model fitting for nonlinear unsteady aerody-
namics. These concepts suggest that the input-outputrelation of the
complex CFD system of interest, that is, flow equations and bound-
ary conditions, can be represented by a relatively simple mathemat-
ical model, which is the ROM or the linear-fitted model. Feeding
an arbitrary input through the ROM is far more efficient than feed-
ing it through the full CFD analysis. Yet, the response captures the
physical characteristicsof the nonlinearsystem. For aeroelasticsys-
tems, a ROM that relates the aerodynamic forces to modal motion
can be defined, offering an efficient method to compute the non-
linear generalized aerodynamic force (GAF) coefficient matrices
required for flutter analysis. Cowan et al.>* used a system identifi-
cation technique to fit a linear model to responses computed by the
STARS CFD code. The method was demonstrated on the AGARD
445.6 wing and on a generic hypersonic vehicle. In these cases,
the generalized forces computed using the fitted linear model accu-
rately predicted the forces obtained by forced excitation, providing
a significant reductionin computational time. The drawback of this
method, as noted by the authors, is that the quality of the results
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depends to a great extent on the correct choice of model and on the
input-output data used to fit the model.

Silva>3~8 presented a reduced-order aerodynamic model that is
founded on the Volterra theory of nonlinear systems. The ROM is
made of a set of Volterra kernels that can be identified from a set
of aerodynamic impulse responses. Once the Volterra kernels are
identified, the nonlinear aerodynamic response to an arbitrary in-
put can be determined using convolution schemes. Retaining all of
the kernels in the convolution scheme would theoretically provide
the fully nonlinear response, avoiding the linearity assumption dis-
cussed earlier, whereas retaining only the first kernel would result
in a linearized response over a nonlinear steady state. The method
was demonstrated for a plunging rigid wing using the CAP-TSD
transonic small disturbance code’-® and for a plunging airfoil using
the CFL3D Navier-Stokes code >3

Ballhaus and Goorjian’ introduced a ROM based on the response
of the CFD system to a step (indicial) input. Using a transonic small
disturbance code, they computed the lift and moment coefficients
of airfoils in response to a harmonically oscillating angle of attack.
Comparison of results obtained by using the indicial response to
results from direct excitation provided insight on the effects of step
amplitude, frequency, and Mach number on the applicability of the
method.

The current study presentsa ROM model, based on the first-order
Volterra series, for evaluation of the unsteady aerodynamic forces
in response to arbitrary modal motion. The ROM is created from
responses of the CFD system to modal step inputs introduced to the
boundary conditions, and therefore it can be seen as an extension
to the ROM methodology presented in Ref. 9. The ROM is used
to compute the GAF matrices, at different values of reduced fre-
quencies, for the purpose of flutter analysis. The ROM is dependent
on the Mach number, but is independent of the dynamic pressure.
Therefore, for a given Mach number, the GAFs at various reduced
frequenciescan be rapidly evaluated by convolutionschemesusing a
sinusoidalinputsignal of the requiredreduced frequency.Responses
computedusing the ROM are comparedto directresponsesobtained
by harmonicallyexcitingthe boundaryconditionsin a CFD run. This
comparison is repeated for various Mach numbers, excitation fre-
quencies, and modes. The method is demonstrated on the AGARD
445.6 wing' using the EZNSS Euler/Navier-Stokescode developed
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by Levy. GAF matrices are compared to linear and nonlinear GAFs
reported in the literature of the AGARD wing. Finally, these GAFs
are used in a flutter analysis of the AGARD wing, comparing flutter
characteristicsto those reported from wind-tunnel tests.

Methodology

Volterra Theory for Nonlinear Systems

The Volterra theory (see Ref. 11) formulates the input-output re-
lation of a nonlinearsystem. The response y[n] to an arbitrary input
signal u[n] can be evaluated by a multidimensional convolution as

N
YInl = ho + Y hyln — k()

k=0

N N
+ Z Z holn — k1,1 — k2Julk1 u[k2] + - - -

k1=0k2=0

N N
+ Z---Zh,,[n—kl,...,n—kn]u[kl]...u[kn]

K=0  kn=0
n=0,1,2,... (1)

where n is the discrete-time variable, & is the steady-stateresponse,
and the functions i, [n — k1, ..., n —kn] are the Volterrakernels of
the system. Silva® showed that the nonlinear Navier-Stokes equa-
tions can be considered weakly nonlinear, that is, can be accurately
represented by a truncated second-order Volterra series, neglect-
ing higher kernels. In the present work, we further assume that the
system is a first-order Volterra system, which is a system whose
response can be evaluated using only the first term of the Volterra
series. Being aware that for nonlinear systems scaling of responses
is not valid for a general input amplitude, we limit ourselves to
small perturbations about the nonlinear mean flow. The system’s
response can then be evaluated by convolving the input signal with
the system’s impulse response i[n] according to

N
y[n]:h[O]—l—Zh[n—k]u[k] n=012,... (@)

k=0

The impulse response of a system represents the manner in which
the systemrespondsto a unit perturbation, which, in a discrete-time,
is defined as

for n=0

Snl=1. n=01,2,... @
L] {0.0 for n#0 ®)
An alternative approach is to relate the CFD system response to
a displacementstep input, which is equivalent to a velocity impulse
input. In this study, the system inputs are modal displacements, and
a modal displacementstep is introduced to the CFD computationas

& for n>0
- —0.1,2,... (4
§ln] {0.0 for n<0 n=0,12, “)

where & is the amplitude of the modal displacement. The recorded
response is normalized by &, to account for the amplitude of the
step input not being unity. The response of the CFD system to an
arbitrary input is computed by convolution of the normalized step
response s[n] with the input signal u[n], according to Duhamel’s
integral

N
y[n] = u[0]s[n] + ZS[" — kJ(ulk] — ulk —11)

k=1
n=0,12,... (5

An importantnote shouldbe made regardingthe mannerin which
different CFD schemes handle grid velocities. The more compre-
hensive approach is to include the time derivatives of the grid by

deriving the governing equations in time-dependent general curvi-
linear coordinates. However, some CFD codes, mainly those that
were designed for nonmoving configurations, omit those deriva-
tives, whereas in other codes, such as CFL3D,'? grid velocities are
defined by the analyst,independentof the grid location. The method
developed in this study is based on the system response to both the
grid displacements and the velocities induced by the input pulse,
and therefore it is applicable only to CFD schemes that account for
the grid velocity.

A direct method to identify the CFD-system step response is to
feed the input signal through the system and record the time history
of the GAFs. This is done in two phases. In the first phase, the CFD
equations are converged to a steady-state condition. This condition
can be defined either by the Mach number and incidences, or it
can be defined as a trimmed maneuver (traditionally a transonic
cruise). Steady flowfields at trimmed maneuvers can be evaluated
by the recently presented methodology of Ref. 13. In the second
phase, the step displacementof Eq. (4) is prescribed to each mode
separately. This modal displacement is then translated to physical
displacements of the CFD surface grid points according to

u= o ©6)

and then applied to the whole grid. The term ¢, in Eq. (6) is a vector
describingthe i th elastic mode shape in the CFD surface grid points.
The method that is used to map the modes from the finite element
nodes, in which they are computed, to the CFD surface grid points,
as well as the method that is used to apply surface displacements
to the whole grid, is described in detail in Ref. 14. The general-
ized aerodynamic forces are recorded during the convergenceof the
CFD response. At every time step they are calculated by a modal
summation of the CFD surface forces F 4 (n), according to

GF 4[n] = ¢TFA [n] (7

A complete database of the CFD-system response is constructed
by logging all of the modal step responses. From this database, the
generalized aerodynamic forces due to any arbitrary modal motion
can be rapidly evaluated using the convolution of Eq. (5).

The results in this paper are all based on step responses, which
were found to be more suitable for this applicationthan the impulse
responses. A comprehensivestudy of impulse vs step responses will
be presented in another paper. Note that compared to the impulse
response, the evaluation of the step response is less efficient. This
is because, although the impulse is merely a transient disturbance
to the CFD grid, the displacementstep defines a new grid shape, and
therefore, requires a larger number of CFD iterationsto converge to
the new steady state. The typical number of iterations for conver-
gence is dependent on the displacement amplitude and on the time
step. For example, in the current application, approximately 1000
iterations were required to converge the flowfield after a modal step
of amplitude of 0.001 was applied, using a time step of 0.01. Never-
theless, the computational time of the step response is only a small
fraction of the time that is required for the full forced-harmonic
analysis.

Aeroelastic System

The aeroelastic equation of motion in generalized coordinates is
stated as

GME +GKE —GF (1) =0 8)

where GM and G K are the generalizedmass and stiffness matrices,
respectively, and GF 4 is the GAFs vector that is dependent on the
structural deformations, their time derivatives, and time histories.
Traditional frequency-domain flutter methods are based on the as-
sumption that the modal motions are simple harmonic motions, so
that Eq. (8) can be written as

[~w’GM + GK — gGAF(ik)]€ =0 )

where g is the dynamicpressureand k the reduced frequencydefined
as

k= wb/U (10)
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where w is the physical frequency and b and U are the reference
semichord and velocity, respectively. GAF is the matrix of general-
ized aerodynamic force coefficients, in which the ith column rep-
resents the generalized forces in all modes due to a unit-amplitude
harmonic motion of the ith mode. To solve Eq. (9) for the stability
boundary, the GAF matrix is first evaluated for different values of
reduced frequencies. Numerical search procedures can then be ap-
plied to find pairs of frequencies and dynamic pressures at which
the system becomes unstable.

In this study, nonlinear GAF matrices are introducedinto Eq. (9).
The term nonlinear GAFs may sound inappropriateinasmuch as the
formulation of the aeroelastic equations for linear stability analysis
[Eq. (9)] is based on the assumption that the aerodynamic forces
linearly depend on the structuraldeformationamplitudes. However,
in this context, the term nonlinear GAFs refers to GAFs evaluated
from a nonlinear flow analysis that are used to compute the re-
sponse to small-amplitude modal excitation about the steady-state
nonlinear flow conditions. This implies that the nonlinear GAFs
retain the nonlinear properties of the mean flow (unlike the linear
GAFs that are independent of the mean flow) and also that the su-
perposition is limited to small perturbations about the steady-state
condition.

The nonlinear GAF matrix can be rapidly evaluated by the con-
volution of Eq. (5), in which the step response s[n] for every mode
is available from the step-response database, and the input u[n] is
a simple harmonic motion in a reduced frequency k. For k =0, the
real part of the ith GAF column is simply the converged value of
the ith mode step response, normalized by the step amplitude and
the dynamic pressure. The imaginary part at kK = 0 equals zero.

There are different numerical methods to solve Eq. (9). Flutter
analysis in this study is performed by introducing the nonlinear
GAFs into a g-method'® flutter analysis, performed by ZAERO. !¢
The nonlinear GAFs are used instead of the linear GAFs thatare nor-
mally computed in ZAERO by its linear panel methods ZONA6'®
(for subsonic flows) and ZONA7'¢ (for supersonic flows). ZAERO
also has a transonic aerodynamic method, ZTAIC,'¢ that relies on
steady pressure distribution from CFD analysis to account for non-
linear effects. The results section of this paper presents comparison
ofthe CFD-based GAFs and the ZAERO GAFs (linearand nonlinear
where available) and the corresponding flutter characteristics.

Results

The proposed ROM methodology of this study is demonstrated
with the AGARD 445.6 wing.'® The AGARD 445.6 wing was tested
for flutter characteristicsin the transonic dynamic tunnel at NASA
Langley Research Center and was used as a test case in many studies
on the subject of transonic unsteady aerodynamics, for example,
Refs. 3 and 17-19.

For the CFD computations, the flowfield around the AGARD
445.6 wing was evaluatedusinga C-H type grid, with 193 grid points
inthe chordwisedirectionalongthe wing and its wake, 65 grid points
inthe spanwisedirection,and41 grid points alonga directionnormal
to the wing surface. The grid dimensions are similar to the dimen-
sionsusedin Ref. 19, where a grid-densitystudy indicated that these
grid dimensions are adequate for the investigated flow conditions.

The flow is analyzed by the EZNSS? Euler/Navier-Stokes code.
Initial analyses provided the steady-stateinviscid flowfield at several
freestream Mach numbers, at a zero angle of attack. Steady-state
pressure coefficient contours at Mach numbers 0.96 and 1.141 are
shown in Fig. 1. The pressure contours of Fig. 1 are similar to those
presented in Ref. 18 for an analysis performed using the CFL3D
code. With the lack of wind-tunnel pressure measurements for the
AGARD 445.6 wing, comparisonto results obtained with other CFD
codes served as a verification of the EZNSS results.

Before proceeding to the unsteady computation, the modes that
were calculated by finite element analysis in Ref. 10 were mapped
onto the CFD surface grid points, by use of the interface method of
Refs. 13 and 14. Figure 2 shows the wing’s elastic modes, already
mapped to the CFD surface grids, indicating the associated modal
frequency. The modes can be characterized as first bending, first
torsion, second bending, and second torsion.

a) b)

Fig. 1 Steady-state pressure contours on the upper surface, at zero
angle of attack, at freestream Mach numbers of a) 0.96 and b) 1.141.

38.17Hz

91.54 Hz

Fig. 2 AGARD 445.6 wing first four elastic mode shapes mapped into
the CFD surface grids.

Next, a step-responsedatabase was constructed for Mach number
of 0.96. A dimensionless time step of 0.01 was used, together with
a modal step amplitude of 0.001. The criteria used to choose these
input parameters were as follows:

1) The time step was chosen to be small enough to achieve ade-
quate resolution of the response. Because the step response is used
to construct the frequency response, the time step should be small
enough to ensure enough samplings percycle. A dimensionlesstime
step of 0.01 results in 1000-100 samplings per cycle for reduced
frequencies of 0.1-1.0.

2) In accordance with the chosen time step, the modal step am-
plitude was chosen such that the resulting grid displacements and
velocitiesare of an order of magnitudethat the CFD code can handle
without blowing up.

3) The grid displacements and velocities should be kept small in
accordance with the basic assumption of linear perturbationsabout
the steady-statecondition. A modal displacementof 0.001 in the first
bending mode results in maximum displacements of about 0.1% of
the root chord. In the first wing torsion mode, the same modal dis-
placement results in a maximum tip torsion angle of about 0.3 deg.

Figure 3 shows the first wing bending mode step response, thatis,
the time-dependent generalized forces in all four modes, recorded
from the CFD in response to a unit modal step applied to the
first mode. The sea-level far-field pressure of p,, =2116.22 b ft?
was used to compute the dimensional forces in Fig. 3. When
the dynamic-pressure-independent GAFs are calculated, these re-
sponses are normalized by the dynamic pressure used to calculate
them (¢ =1/2y M2 P,,). Therefore, the value of p,, used in the
CFD analysis is meaningless and can be taken as unity, or y ™!, as
normally is the case in CFD analyses.

The modes of the AGARD 445.6 wing are weakly coupled, that
is, the first mode is mainly a bending mode, whereas the second
mode is mainly torsion. Therefore, when the first mode is excited,
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Fig. 3 Recorded CFD response to a step input in the first wing bending mode, Mach 0.96.
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Fig. 4 Recorded CFD response to a step input in the first wing torsion mode, Mach 0.96.

generalizedforces developin responseto modal velocity rather than
in response to modal displacement. This can be seen in Fig. 3: Ver-
tical velocity exists only in the first time step, and it causes large
generalized forces to develop. These forces then rapidly decay, and
at the steady state the generalized forces are almost zero. Contrar-
ily, when the second mode is excited by a modal step, the modal
displacement changes the local angles of attack, leading to nonzero
forces at the steady state, as seen in Fig. 4.

Nonlinear GAFs

Next, the GAFs computed by the convolution of Eq. (5) are
compared to the forces obtained directly from the CFD analysis in

response to a forced-harmonic excitation. For the forced-harmonic
response, a sinusoidal modal displacement was prescribed to each
mode, in a time-accurate simulation, which was restarted from the
steady-state flow conditions of Mach 0.96 and zero angle of attack.
The time step for the forcedharmonicanalysis was chosenas 0.0279,
and the modalamplitude was chosenas 0.01, whichis 10 times larger
thanthe modal amplitudethat was used to calculatethe step response
but still in the amplitude range that results in a linear response (in
most cases). Comparisons of the convolvedand the direct responses
were repeated for a large range of oscillationfrequencies, for all four
elastic modes. Figure 5 shows the convolved and direct forces in all
of the modes in response to an oscillation of the first wing bending
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mode, at frequencies of 40 and 80 Hz (which correspond to a re-
duced frequencies of 0.23 and 0.47, respectively). Figure 6 shows
the 120-Hz response (corresponds to a reduced frequency of 0.7).
Figure 7 shows the convolvedvs the direct responseto an oscillation
of the first wing torsionmode at a modal amplitude of 0.025 and fre-
quency of 40 Hz. In this case, the oscillation amplitude is 25 times
larger than the amplitude used to constructthe step response. In all
cases, the convolved response compares very well with the direct
response, which demonstrates the wide range of application of the
ROM.

Comparisons were made for several Mach numbers (0.678, 0.96,
1.141). In all cases in which the direct response was linear, it was
very well predictedby the ROM. Among the studied cases, some of
the direct responses were nonlinear, typically as a response to high-
amplitudeinputsand at the low-frequencyrange (5-10 Hz). In those
cases, there were discrepancies between the direct and convolved
responses, as can be seen, for example, in Fig. 8, which corresponds
to excitation of the first torsion mode at Mach 1.141, at frequency
of 10 Hz (reduced frequency of 0.059). When the direct input am-
plitude was decreased, such that the direct response was linear, a
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good matching appeared (Fig. 9). The difference between Figs. 8
and 9 does not suggest any improvement of the ROM, but rather
demonstrates that the first-order ROM is accurate for predicting
responsesto small perturbationsabout the nonlinearmean flow. Be-
causethe aeroelasticequation for flutter analysis [Eq. (9)] is already
cast as a linear stability problem, there is no significance to the dis-
placement amplitudesin determining the system’s stability. A ROM
made of a database of step responses,computed with small displace-
ment/velocityamplitudes,canbe used to evaluatethe nonlinearGAF
matrices at a large range of reduced frequencies as shown next.

The evaluation of the unsteady aerodynamic forces by convolu-
tion offers a great computationaltime saving compared to the direct
response. For the AGARD 445.6 wing, creating the step-response
databaseat a specific Mach number for all four modes required 4000
CFD iterations. Then, the evaluation of the forces along a range of
frequencies was performed within a few minutes. For comparison,
the direct evaluation of the forces during one cycle at a frequency
of 5 Hz required approximately 8000 CFD iterations.

Nonlinear GAFs were computed for a range of reduced frequen-
cies and compared to linear GAFs computed by the ZAERO’s
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ZONA6 and ZONA7 aerodynamic modules. Where data was
available, a comparison was also made with GAFs computed
by ZTAIC,'®* ZAERO’s nonlinear transonic method, in which
steady pressure distributions from CAP-TSD analysis were used
to introduce nonlinear effects into the GAFs.?! Figures 10-13 show
the GAFs in the form of complex numbers, for the first two modes.
At Mach number of 1.141, the real part of the CFD-based A, ele-
ment is very small compared to the linear one, and the real part of
the CFD-based A, element is significantly different than the linear
one. The same phenomenon was reported in Refs. 19 and 22, in

which the decrease of the A,, term was attributed to the aft motion
of the aerodynamic center due to the shock wave. Apparently, the
shock predicted by the Euler analysis for this case is stronger than
in reality, and a Navier-Stokes analysis is required to produce more
realistic GAF matrices."”

Flutter Analysis

The nonlinear GAFs of the first four modes were used in a g-
method flutter analysis within ZAERO, replacing the linear GAFs.
For each Mach number, the density was kept fixed at a value equal
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Fig. 11 Comparison of linear and nonlinear GAFs for the first two modes, Mach 0.9.
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Fig. 12 Comparison of linear and nonlinear GAFs for the first two modes, Mach 0.96.

to the flutter density reported in Ref. 10 and the velocity was varied.
Figure 14 shows the computed flutter characteristic of the AGARD
445.6 wing, compared with wind-tunnel test results reported in
Ref. 10. Flutter characteristics are presented in terms of the flut-
ter speed index U /bw, /u and the flutter frequency ratio /w,,
where U and w are the flutter velocity and frequency, respectively,
b, is the streamwise semichord measured at the wing root, w, is the
natural frequency of the wing’s first torsion mode, and u =m/pV
is the mass ratio defined as the ratio between the wing mass and

the mass of air contained within a volume V of a conical frustum
having streamwise root chord as lower base diameter, streamwise
tip chord as upper base diameter, and panel span as height.

At the transonicregime (Mach 0.9 and 0.96) the flutter character-
istics are in good agreement with wind-tunnel test results. At Mach
number 1.141, the flutter analysis based on the nonlinear GAFs
resulted in no flutter of the first wing bending and wing torsion
modes. In Ref. 19, flutter at Mach 1.141 is reported with GAFs that
are similar to those of the current study; however, the flutter char-
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Fig. 14 Computed vs wind tunnel tests flutter characteristics for the AGARD 445.6 wing.

acteristics are significantly different than those of the wind-tunnel
test. In general, it was found that the flutter characteristics of the
AGARD 445.6 wing at these conditions are not only sensitive with
respect to the GAF values but also with respect to the method used
for flutter analysis (not presented in this paper).

Conclusions

The paper presented a novel method to evaluate nonlinear tran-
sonic GAFs from a CFD Euler code for flutter analysis. A set of CFD
modal step responses served as a first-order Volterra series ROM,

and GAF matrices were computed by convolutionof sinusoidal sig-
nals, in different reduced frequencies, with the ROM. Comparison
of the GAFs computed from the ROM with those computed by di-
rect sinusoidal excitation demonstrated that for the linear response
regime, that is, for small amplitudes of excitation, the ROM is capa-
ble of evaluating the unsteady aerodynamic forces very accurately.
For larger amplitudes, for which the response is nonlinear,the ROM
suggested in this paper is not adequate for accurate prediction of
the response. For applications where the response to large displace-
mentsisrequired,for example, limit-cycleoscillationprediction,the
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ROM can be enhanced to include second- and higher-order kernel
elements. Computing the GAFs over arange of reduced frequencies
by the ROM provided a significant computational time saving com-
pared to the forced-harmonicmethod. Flutter analysis performedby
the g-method with nonlinear GAFs provided flutter characteristics
at Mach numbers of 0.678-1.141. The transonic flutter characteris-
tics were found to be in good agreement with those reported from
wind-tunnel tests and in less close agreementin other flow regimes.
At Mach number 1.141, it was found that the Euler analysis is in-
adequate for the prediction of the flowfield.

The nonlinear GAFs can be utilized in structural aeroelastic de-
sign applications based on the modal approach, where a limited,
fixed setof structuralmodes of the baselinestructureis used through-
out the optimization process. With the modal-based design method,
the GAFs would have to be evaluated only once, for the baseline
structure. Structural design was not applicable with the AGARD
445.6 wing that served as the test case of this paper because a finite
element structural model was not available to the authors. Structural
designusing nonlinear GAF matrices is, therefore, left for future ap-
plications.
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