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A methodology for ef� cient evaluation of generalized aerodynamic forces (GAFs) in transonic � ows for use in
� utter analysis is presented. GAF matrices are evaluated from a reduced-order model (ROM), which comprises
the generalized aerodynamic forces recorded from a time-accurate computational � uid dynamics (CFD) analysis
in response to a modal step excitation in each structural mode. With the step response database, that is, the ROM,
the comprehensive CFD analysis is replaced by a simple convolution scheme to compute the GAFs. The forces due
to excitation of one mode at a given Mach number for all reduced frequencies can be computed from a single step
response. Comparison of the GAFs computed from the ROM to those computed by direct sinusoidal excitation of
the boundary conditions in a CFD run demonstrate, that for small amplitudes of excitation, the ROM is capable
of predicting the unsteady aerodynamic forces very accurately. The use of ROM offers a signi� cant reduction
in computational time and makes the calculation of CFD-based unsteady aerodynamic forces for � utter analysis
feasible. The CFD-based GAFs are used to conduct a � utter analysis of the AGARD 445.6 wing at several Mach
numbers, and the results are compared to wind tunnel test results.

Introduction

I T is widely recognizedthat computational� uid dynamics (CFD)
methods should be more extensivelyused in aeroelasticanalyses

and structuraldesign applications.The main argument that supports
this notion is that in the transonic � ow regime, which is of primary
interest in aircraftdesign,CFD methodshave signi� cant advantages
over the currently used linear aerodynamic methods. The major
obstacles that prohibit extensive use of CFD methods in aircraft
designare the large computationalresourcesassociatedwith a single
CFD analysis and the fact that traditional frequency-domain� utter
analysis methods are based on repeated evaluationsof the unsteady
aerodynamic forces at different values of reduced frequencies.

Recent studies1¡4 introducedthe conceptsof reduced-ordermod-
els (ROMs) and linear model � tting for nonlinear unsteady aerody-
namics. These concepts suggest that the input–output relationof the
complex CFD system of interest, that is, � ow equations and bound-
ary conditions,can be representedby a relativelysimple mathemat-
ical model, which is the ROM or the linear-� tted model. Feeding
an arbitrary input through the ROM is far more ef� cient than feed-
ing it through the full CFD analysis. Yet, the response captures the
physical characteristicsof the nonlinearsystem.For aeroelasticsys-
tems, a ROM that relates the aerodynamic forces to modal motion
can be de� ned, offering an ef� cient method to compute the non-
linear generalized aerodynamic force (GAF) coef� cient matrices
required for � utter analysis. Cowan et al.3;4 used a system identi� -
cation technique to � t a linear model to responses computed by the
STARS CFD code. The method was demonstrated on the AGARD
445.6 wing and on a generic hypersonic vehicle. In these cases,
the generalized forces computed using the � tted linear model accu-
rately predicted the forces obtained by forced excitation, providing
a signi� cant reduction in computational time. The drawback of this
method, as noted by the authors, is that the quality of the results
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depends to a great extent on the correct choice of model and on the
input–output data used to � t the model.

Silva2;5¡8 presented a reduced-order aerodynamic model that is
founded on the Volterra theory of nonlinear systems. The ROM is
made of a set of Volterra kernels that can be identi� ed from a set
of aerodynamic impulse responses. Once the Volterra kernels are
identi� ed, the nonlinear aerodynamic response to an arbitrary in-
put can be determined using convolution schemes. Retaining all of
the kernels in the convolution scheme would theoretically provide
the fully nonlinear response, avoiding the linearity assumption dis-
cussed earlier, whereas retaining only the � rst kernel would result
in a linearized response over a nonlinear steady state. The method
was demonstrated for a plunging rigid wing using the CAP-TSD
transonic small disturbancecode7;8 and for a plunging airfoil using
the CFL3D Navier–Stokes code.2;8

Ballhaus and Goorjian9 introduceda ROM based on the response
of the CFD system to a step (indicial) input. Using a transonicsmall
disturbance code, they computed the lift and moment coef� cients
of airfoils in response to a harmonically oscillating angle of attack.
Comparison of results obtained by using the indicial response to
results from direct excitationprovided insight on the effects of step
amplitude, frequency, and Mach number on the applicability of the
method.

The current study presentsa ROM model, based on the � rst-order
Volterra series, for evaluation of the unsteady aerodynamic forces
in response to arbitrary modal motion. The ROM is created from
responses of the CFD system to modal step inputs introduced to the
boundary conditions, and therefore it can be seen as an extension
to the ROM methodology presented in Ref. 9. The ROM is used
to compute the GAF matrices, at different values of reduced fre-
quencies, for the purposeof � utter analysis.The ROM is dependent
on the Mach number, but is independent of the dynamic pressure.
Therefore, for a given Mach number, the GAFs at various reduced
frequenciescan be rapidlyevaluatedby convolutionschemesusinga
sinusoidalinputsignalof the requiredreducedfrequency.Responses
computedusing the ROM are comparedto direct responsesobtained
byharmonicallyexcitingtheboundaryconditionsin a CFD run.This
comparison is repeated for various Mach numbers, excitation fre-
quencies, and modes. The method is demonstrated on the AGARD
445.6wing10 usingtheEZNSS Euler/Navier–Stokescodedeveloped

547



548 RAVEH, LEVY, AND KARPEL

by Levy. GAF matrices are compared to linear and nonlinearGAFs
reported in the literature of the AGARD wing. Finally, these GAFs
are used in a � utter analysisof the AGARD wing, comparing � utter
characteristics to those reported from wind-tunnel tests.

Methodology
Volterra Theory for Nonlinear Systems

The Volterra theory (see Ref. 11) formulates the input–output re-
lation of a nonlinearsystem. The response y[n] to an arbitrary input
signal u[n] can be evaluated by a multidimensional convolution as

y[n] D h0 C
N

k D 0

h1[n ¡ k]u.k/

C
N

k1 D 0

N

k2 D 0

h2[n ¡ k1; n ¡ k2]u[k1]u[k2] C ¢ ¢ ¢

C
N

k1 D 0

¢ ¢ ¢
N

kn D 0

hn [n ¡ k1; : : : ; n ¡ kn]u[k1] : : : u[kn]

n D 0; 1; 2; : : : (1)

where n is the discrete-timevariable,h0 is the steady-stateresponse,
and the functions hn [n ¡ k1; : : : ; n ¡ kn] are the Volterra kernels of
the system. Silva8 showed that the nonlinear Navier–Stokes equa-
tions can be considered weakly nonlinear, that is, can be accurately
represented by a truncated second-order Volterra series, neglect-
ing higher kernels. In the present work, we further assume that the
system is a � rst-order Volterra system, which is a system whose
response can be evaluated using only the � rst term of the Volterra
series. Being aware that for nonlinear systems scaling of responses
is not valid for a general input amplitude, we limit ourselves to
small perturbations about the nonlinear mean � ow. The system’s
response can then be evaluated by convolving the input signal with
the system’s impulse response h[n] according to

y[n] D h[0] C
N

k D 0

h[n ¡ k]u[k] n D 0; 1; 2; : : : (2)

The impulse response of a system represents the manner in which
the system respondsto a unit perturbation,which, in a discrete-time,
is de� ned as

±[n] D
1:0 for n D 0

0:0 for n 6D 0
n D 0; 1; 2; : : : (3)

An alternative approach is to relate the CFD system response to
a displacementstep input, which is equivalent to a velocity impulse
input. In this study, the system inputs are modal displacements,and
a modal displacementstep is introduced to the CFD computationas

» [n] D
»0 for n ¸ 0

0:0 for n < 0
n D 0; 1; 2; : : : (4)

where »0 is the amplitude of the modal displacement.The recorded
response is normalized by »0 to account for the amplitude of the
step input not being unity. The response of the CFD system to an
arbitrary input is computed by convolution of the normalized step
response s[n] with the input signal u[n], according to Duhamel’s
integral

y[n] D u[0]s[n] C
N

k D 1

s[n ¡ k].u[k] ¡ u[k ¡ 1]/

n D 0; 1; 2; : : : (5)

An importantnote shouldbe made regardingthe manner in which
different CFD schemes handle grid velocities. The more compre-
hensive approach is to include the time derivatives of the grid by

deriving the governing equations in time-dependent general curvi-
linear coordinates. However, some CFD codes, mainly those that
were designed for nonmoving con� gurations, omit those deriva-
tives, whereas in other codes, such as CFL3D,12 grid velocities are
de� ned by the analyst, independentof the grid location.The method
developed in this study is based on the system response to both the
grid displacements and the velocities induced by the input pulse,
and therefore it is applicable only to CFD schemes that account for
the grid velocity.

A direct method to identify the CFD-system step response is to
feed the input signal through the system and record the time history
of the GAFs. This is done in two phases. In the � rst phase, the CFD
equations are converged to a steady-state condition. This condition
can be de� ned either by the Mach number and incidences, or it
can be de� ned as a trimmed maneuver (traditionally a transonic
cruise). Steady � ow� elds at trimmed maneuvers can be evaluated
by the recently presented methodology of Ref. 13. In the second
phase, the step displacement of Eq. (4) is prescribed to each mode
separately. This modal displacement is then translated to physical
displacements of the CFD surface grid points according to

u D Ái »i (6)

and then applied to the whole grid.The term Ái in Eq. (6) is a vector
describingthe i th elasticmode shape in the CFD surfacegrid points.
The method that is used to map the modes from the � nite element
nodes, in which they are computed, to the CFD surface grid points,
as well as the method that is used to apply surface displacements
to the whole grid, is described in detail in Ref. 14. The general-
ized aerodynamicforces are recordedduring the convergenceof the
CFD response. At every time step they are calculated by a modal
summation of the CFD surface forces FA.n/, according to

GFA[n] D ÁT FA[n] (7)

A complete database of the CFD-system response is constructed
by logging all of the modal step responses. From this database, the
generalized aerodynamic forces due to any arbitrary modal motion
can be rapidly evaluated using the convolution of Eq. (5).

The results in this paper are all based on step responses, which
were found to be more suitable for this applicationthan the impulse
responses.A comprehensivestudyof impulse vs step responseswill
be presented in another paper. Note that compared to the impulse
response, the evaluation of the step response is less ef� cient. This
is because, although the impulse is merely a transient disturbance
to the CFD grid, the displacementstep de� nes a new grid shape, and
therefore, requires a larger number of CFD iterations to converge to
the new steady state. The typical number of iterations for conver-
gence is dependent on the displacement amplitude and on the time
step. For example, in the current application, approximately 1000
iterationswere required to converge the � ow� eld after a modal step
of amplitudeof 0.001 was applied, using a time step of 0.01. Never-
theless, the computational time of the step response is only a small
fraction of the time that is required for the full forced-harmonic
analysis.

Aeroelastic System

The aeroelastic equation of motion in generalized coordinates is
stated as

G M R» C G K » ¡ GFA.t/ D 0 (8)

where G M and G K are the generalizedmass and stiffnessmatrices,
respectively, and GFA is the GAFs vector that is dependent on the
structural deformations, their time derivatives, and time histories.
Traditional frequency-domain � utter methods are based on the as-
sumption that the modal motions are simple harmonic motions, so
that Eq. (8) can be written as

[¡!2G M C G K ¡ qGAF.ik/]» D 0 (9)

whereq is the dynamicpressureandk the reducedfrequencyde� ned
as

k D !b=U (10)
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where ! is the physical frequency and b and U are the reference
semichord and velocity, respectively.GAF is the matrix of general-
ized aerodynamic force coef� cients, in which the i th column rep-
resents the generalized forces in all modes due to a unit-amplitude
harmonic motion of the i th mode. To solve Eq. (9) for the stability
boundary, the GAF matrix is � rst evaluated for different values of
reduced frequencies. Numerical search procedures can then be ap-
plied to � nd pairs of frequencies and dynamic pressures at which
the system becomes unstable.

In this study,nonlinearGAF matrices are introducedinto Eq. (9).
The term nonlinearGAFs may sound inappropriateinasmuch as the
formulation of the aeroelastic equations for linear stability analysis
[Eq. (9)] is based on the assumption that the aerodynamic forces
linearlydependon the structuraldeformationamplitudes.However,
in this context, the term nonlinear GAFs refers to GAFs evaluated
from a nonlinear � ow analysis that are used to compute the re-
sponse to small-amplitude modal excitation about the steady-state
nonlinear � ow conditions. This implies that the nonlinear GAFs
retain the nonlinear properties of the mean � ow (unlike the linear
GAFs that are independent of the mean � ow) and also that the su-
perposition is limited to small perturbations about the steady-state
condition.

The nonlinear GAF matrix can be rapidly evaluated by the con-
volution of Eq. (5), in which the step response s[n] for every mode
is available from the step-response database, and the input u[n] is
a simple harmonic motion in a reduced frequency k. For k D 0, the
real part of the i th GAF column is simply the converged value of
the i th mode step response, normalized by the step amplitude and
the dynamic pressure. The imaginary part at k D 0 equals zero.

There are different numerical methods to solve Eq. (9). Flutter
analysis in this study is performed by introducing the nonlinear
GAFs into a g-method15 � utter analysis, performed by ZAERO.16

The nonlinearGAFs are used insteadof the linearGAFs that are nor-
mally computed in ZAERO by its linear panel methods ZONA616

(for subsonic � ows) and ZONA716 (for supersonic � ows). ZAERO
also has a transonic aerodynamic method, ZTAIC,16 that relies on
steady pressure distribution from CFD analysis to account for non-
linear effects. The results section of this paper presents comparison
of theCFD-basedGAFs and theZAERO GAFs (linearandnonlinear
where available) and the corresponding� utter characteristics.

Results
The proposed ROM methodology of this study is demonstrated

with the AGARD 445.6 wing.10 The AGARD 445.6wing was tested
for � utter characteristics in the transonic dynamic tunnel at NASA
Langley ResearchCenter and was used as a test case in many studies
on the subject of transonic unsteady aerodynamics, for example,
Refs. 3 and 17–19.

For the CFD computations, the � ow� eld around the AGARD
445.6wingwasevaluatedusinga C–H typegrid,with 193gridpoints
in thechordwisedirectionalongthewingand itswake,65gridpoints
in the spanwisedirection,and41grid pointsalonga directionnormal
to the wing surface. The grid dimensions are similar to the dimen-
sionsused in Ref. 19, where a grid-densitystudy indicatedthat these
grid dimensions are adequate for the investigated � ow conditions.

The � ow is analyzed by the EZNSS20 Euler/Navier–Stokes code.
Initialanalysesprovidedthe steady-stateinviscid� ow� eldat several
freestream Mach numbers, at a zero angle of attack. Steady-state
pressure coef� cient contours at Mach numbers 0.96 and 1.141 are
shown in Fig. 1. The pressure contoursof Fig. 1 are similar to those
presented in Ref. 18 for an analysis performed using the CFL3D
code. With the lack of wind-tunnel pressure measurements for the
AGARD 445.6wing, comparisonto resultsobtainedwith otherCFD
codes served as a veri� cation of the EZNSS results.

Before proceeding to the unsteady computation, the modes that
were calculated by � nite element analysis in Ref. 10 were mapped
onto the CFD surface grid points, by use of the interface method of
Refs. 13 and 14. Figure 2 shows the wing’s elastic modes, already
mapped to the CFD surface grids, indicating the associated modal
frequency. The modes can be characterized as � rst bending, � rst
torsion, second bending, and second torsion.

a) b)

Fig. 1 Steady-state pressure contours on the upper surface, at zero
angle of attack, at freestream Mach numbers of a) 0.96 and b) 1.141.

Fig. 2 AGARD 445.6 wing � rst four elastic mode shapes mapped into
the CFD surface grids.

Next, a step-responsedatabasewas constructedfor Mach number
of 0.96. A dimensionless time step of 0.01 was used, together with
a modal step amplitude of 0.001. The criteria used to choose these
input parameters were as follows:

1) The time step was chosen to be small enough to achieve ade-
quate resolution of the response. Because the step response is used
to construct the frequency response, the time step should be small
enough to ensureenoughsamplingsper cycle.A dimensionlesstime
step of 0.01 results in 1000–100 samplings per cycle for reduced
frequencies of 0.1–1.0.

2) In accordance with the chosen time step, the modal step am-
plitude was chosen such that the resulting grid displacements and
velocitiesare of an orderof magnitudethat the CFD code can handle
without blowing up.

3) The grid displacements and velocities should be kept small in
accordancewith the basic assumption of linear perturbationsabout
the steady-statecondition.A modaldisplacementof 0.001 in the � rst
bending mode results in maximum displacements of about 0.1% of
the root chord. In the � rst wing torsion mode, the same modal dis-
placement results in a maximum tip torsion angle of about 0.3 deg.

Figure 3 shows the � rst wing bendingmode step response,that is,
the time-dependent generalized forces in all four modes, recorded
from the CFD in response to a unit modal step applied to the
� rst mode. The sea-level far-� eld pressure of p1 D 2116:22 lb ft2

was used to compute the dimensional forces in Fig. 3. When
the dynamic-pressure-independent GAFs are calculated, these re-
sponses are normalized by the dynamic pressure used to calculate
them (q D 1=2° M 2

1 P1). Therefore, the value of p1 used in the
CFD analysis is meaningless and can be taken as unity, or ° ¡1, as
normally is the case in CFD analyses.

The modes of the AGARD 445.6 wing are weakly coupled, that
is, the � rst mode is mainly a bending mode, whereas the second
mode is mainly torsion. Therefore, when the � rst mode is excited,
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Fig. 3 Recorded CFD response to a step input in the � rst wing bending mode, Mach 0.96.

Fig. 4 Recorded CFD response to a step input in the � rst wing torsion mode, Mach 0.96.

generalizedforces developin responseto modal velocityrather than
in response to modal displacement.This can be seen in Fig. 3: Ver-
tical velocity exists only in the � rst time step, and it causes large
generalized forces to develop. These forces then rapidly decay, and
at the steady state the generalized forces are almost zero. Contrar-
ily, when the second mode is excited by a modal step, the modal
displacement changes the local angles of attack, leading to nonzero
forces at the steady state, as seen in Fig. 4.

Nonlinear GAFs

Next, the GAFs computed by the convolution of Eq. (5) are
compared to the forces obtained directly from the CFD analysis in

response to a forced-harmonic excitation. For the forced-harmonic
response, a sinusoidal modal displacement was prescribed to each
mode, in a time-accurate simulation, which was restarted from the
steady-state � ow conditionsof Mach 0:96 and zero angle of attack.
The time step for the forcedharmonicanalysiswas chosenas 0:0279,
and themodalamplitudewas chosenas 0:01,which is 10 times larger
than the modalamplitudethat was used to calculatethe step response
but still in the amplitude range that results in a linear response (in
most cases). Comparisonsof the convolvedand the direct responses
were repeatedfor a large rangeof oscillationfrequencies,for all four
elastic modes. Figure 5 shows the convolvedand direct forces in all
of the modes in response to an oscillation of the � rst wing bending
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Fig. 5 Convolved vs direct response to sinusoidal excitation of the � rst wing bending mode at frequencies of 40 and 80 Hz, modal amplitude of 0.01,
and Mach 0.96.

Fig. 6 Convolved vs direct response to sinusoidal excitation of the � rst wing bending mode at a frequency of 120 Hz, modal amplitude of 0.01, and
Mach 0.96.

mode, at frequencies of 40 and 80 Hz (which correspond to a re-
duced frequencies of 0.23 and 0.47, respectively). Figure 6 shows
the 120-Hz response (corresponds to a reduced frequency of 0.7).
Figure 7 shows the convolvedvs the direct responseto an oscillation
of the � rst wing torsionmode at a modal amplitudeof 0:025 and fre-
quency of 40 Hz. In this case, the oscillation amplitude is 25 times
larger than the amplitude used to construct the step response. In all
cases, the convolved response compares very well with the direct
response, which demonstrates the wide range of application of the
ROM.

Comparisons were made for several Mach numbers (0:678, 0:96,
1:141). In all cases in which the direct response was linear, it was
very well predictedby the ROM. Among the studied cases, some of
the direct responseswere nonlinear, typicallyas a response to high-
amplitudeinputsand at the low-frequencyrange (5–10 Hz). In those
cases, there were discrepancies between the direct and convolved
responses,as can be seen, for example, in Fig. 8, which corresponds
to excitation of the � rst torsion mode at Mach 1.141, at frequency
of 10 Hz (reduced frequency of 0.059). When the direct input am-
plitude was decreased, such that the direct response was linear, a



552 RAVEH, LEVY, AND KARPEL

Fig. 7 Convolved vs direct response to sinusoidal excitation of the � rst wing torsion mode at a frequency of 40 Hz, modal amplitude of 0.025, and
Mach 0.96.

Fig. 8 Convolved vs direct response to sinusoidal excitation of the � rst wing torsion mode at a frequency of 10 Hz, modal amplitude of 0.01, and
Mach 1.141.

good matching appeared (Fig. 9). The difference between Figs. 8
and 9 does not suggest any improvement of the ROM, but rather
demonstrates that the � rst-order ROM is accurate for predicting
responses to small perturbationsabout the nonlinearmean � ow. Be-
cause the aeroelasticequation for � utter analysis [Eq. (9)] is already
cast as a linear stability problem, there is no signi� cance to the dis-
placement amplitudes in determining the system’s stability.A ROM
made of a databaseof step responses,computedwith small displace-
ment/velocityamplitudes,canbe used to evaluatethenonlinearGAF
matrices at a large range of reduced frequencies as shown next.

The evaluation of the unsteady aerodynamic forces by convolu-
tion offers a great computationaltime saving compared to the direct
response. For the AGARD 445.6 wing, creating the step-response
databaseat a speci� c Mach number for all four modes required4000
CFD iterations. Then, the evaluation of the forces along a range of
frequencies was performed within a few minutes. For comparison,
the direct evaluation of the forces during one cycle at a frequency
of 5 Hz required approximately 8000 CFD iterations.

Nonlinear GAFs were computed for a range of reduced frequen-
cies and compared to linear GAFs computed by the ZAERO’s
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Fig. 9 Convolved vs direct response to sinusoidal excitation of the � rst wing torsion mode at a frequency of 10 Hz, modal amplitude of 0.001, and
Mach 1.141.

Fig. 10 Comparison of linear and nonlinear GAFs for the � rst two modes, Mach 0.678.

ZONA6 and ZONA7 aerodynamic modules. Where data was
available, a comparison was also made with GAFs computed
by ZTAIC,16 ZAERO’s nonlinear transonic method, in which
steady pressure distributions from CAP-TSD analysis were used
to introduce nonlinear effects into the GAFs.21 Figures 10–13 show
the GAFs in the form of complex numbers, for the � rst two modes.
At Mach number of 1.141, the real part of the CFD-based A22 ele-
ment is very small compared to the linear one, and the real part of
the CFD-based A12 element is signi� cantly different than the linear
one. The same phenomenon was reported in Refs. 19 and 22, in

which the decrease of the A22 term was attributed to the aft motion
of the aerodynamic center due to the shock wave. Apparently, the
shock predicted by the Euler analysis for this case is stronger than
in reality, and a Navier–Stokes analysis is required to produce more
realistic GAF matrices.19

Flutter Analysis

The nonlinear GAFs of the � rst four modes were used in a g-
method � utter analysis within ZAERO, replacing the linear GAFs.
For each Mach number, the density was kept � xed at a value equal
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Fig. 11 Comparison of linear and nonlinear GAFs for the � rst two modes, Mach 0.9.

Fig. 12 Comparison of linear and nonlinear GAFs for the � rst two modes, Mach 0.96.

to the � utter density reported in Ref. 10 and the velocitywas varied.
Figure 14 shows the computed � utter characteristicof the AGARD
445.6 wing, compared with wind-tunnel test results reported in
Ref. 10. Flutter characteristics are presented in terms of the � ut-
ter speed index U f =b!®

p
¹ and the � utter frequency ratio !=!® ,

where U f and ! are the � utter velocity and frequency, respectively,
bs is the streamwise semichord measured at the wing root, !® is the
natural frequency of the wing’s � rst torsion mode, and ¹ D m=½V
is the mass ratio de� ned as the ratio between the wing mass and

the mass of air contained within a volume V of a conical frustum
having streamwise root chord as lower base diameter, streamwise
tip chord as upper base diameter, and panel span as height.

At the transonic regime (Mach 0.9 and 0.96) the � utter character-
istics are in good agreement with wind-tunnel test results. At Mach
number 1.141, the � utter analysis based on the nonlinear GAFs
resulted in no � utter of the � rst wing bending and wing torsion
modes. In Ref. 19, � utter at Mach 1.141 is reported with GAFs that
are similar to those of the current study; however, the � utter char-
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Fig. 13 Comparison of linear and nonlinear GAFs for the � rst two modes, Mach 1.141.

Flutter speed index

Flutter frequency ratio

Fig. 14 Computed vs wind tunnel tests � utter characteristics for the AGARD 445.6 wing.

acteristics are signi� cantly different than those of the wind-tunnel
test. In general, it was found that the � utter characteristics of the
AGARD 445.6 wing at these conditions are not only sensitive with
respect to the GAF values but also with respect to the method used
for � utter analysis (not presented in this paper).

Conclusions
The paper presented a novel method to evaluate nonlinear tran-

sonicGAFs froma CFD Euler code for � utter analysis.A set of CFD
modal step responses served as a � rst-order Volterra series ROM,

and GAF matrices were computed by convolutionof sinusoidalsig-
nals, in different reduced frequencies, with the ROM. Comparison
of the GAFs computed from the ROM with those computed by di-
rect sinusoidal excitation demonstrated that for the linear response
regime, that is, for small amplitudesof excitation, the ROM is capa-
ble of evaluating the unsteady aerodynamic forces very accurately.
For larger amplitudes, for which the response is nonlinear,the ROM
suggested in this paper is not adequate for accurate prediction of
the response.For applicationswhere the response to large displace-
ments is required,for example,limit-cycleoscillationprediction,the
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ROM can be enhanced to include second- and higher-order kernel
elements. Computing the GAFs over a range of reduced frequencies
by the ROM provided a signi� cant computational time saving com-
pared to the forced-harmonicmethod.Flutter analysisperformedby
the g-method with nonlinear GAFs provided � utter characteristics
at Mach numbers of 0.678–1.141. The transonic � utter characteris-
tics were found to be in good agreement with those reported from
wind-tunnel tests and in less close agreement in other � ow regimes.
At Mach number 1.141, it was found that the Euler analysis is in-
adequate for the prediction of the � ow� eld.

The nonlinear GAFs can be utilized in structural aeroelastic de-
sign applications based on the modal approach, where a limited,
� xedset of structuralmodesof thebaselinestructureis used through-
out the optimizationprocess.With the modal-baseddesign method,
the GAFs would have to be evaluated only once, for the baseline
structure. Structural design was not applicable with the AGARD
445.6 wing that served as the test case of this paper because a � nite
element structuralmodel was not available to the authors.Structural
designusingnonlinearGAF matrices is, therefore,left for futureap-
plications.
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